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On the basis of Berkeley−Mach−Poincaré principle of relativity and in the assumption of absence of 
any specific (inertial) reference systems in empty space the new mechanics of bodies motion is 
constructed. This motion is determined only by the relative distances and velocities of bodies. It is 
shown that the mutual rotation of pair of particles related to almost immobile “distant stars” 
(galaxies) leads to centrifugal force origin. 
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1. Introduction 
 
The concept of absolute space (aether) has been introduced by Newton at build-up of a 
mechanics1. This concept was undergone to criticism from outside Newton's many 
contemporaries, in particular Berkeley2  who came to a conclusion about impossibility of 
existence of absolute space (aether) with its inertial reference systems, and also to 
understanding of that inertia should be caused by motion of bodies related to “distant 
stars”. To a similar deduction later have come Mach3 and Poincaré4  who have specified 
in necessity of creation of a relativistic mechanics, i.e. a mechanics of the relative 
motion of bodies. 

The given problem has not been solved neither in special, nor in common theories of 
relativity which still operated with concepts of absolute space. Numerous attempts to 
construct the theory in which inertia of rotation would be caused by influence of remote 
galaxies (“far stars”), have appeared unsatisfactory5. Thus, the problem of 
Berkeley−Mach−Poincaré is not solved in existing physical theories. 

The theory named as a universal mechanics which initial principles essentially differ 
from usually used is stated below. It in particular concerns space-time properties of 
bodies motion. 

At first, only relative motions of bodies are considered. Thus it is supposed that the 
space does not have any preferential (inertial) reference systems. Thereby the space is 
not considered as something absolute (aether) possessing to fix bodies motion. 

Secondly, the causality principle is used for description of interaction of bodies, i.e. 
it is supposed that action of one body on another, located on distance r, happens in time 
r/c, where c – velocity of propagation of interactions (velocity of light). Thus velocity of 
propagation of interaction is constant and does not depend on character of movements of 
bodies that also means a space relativity. Causal character of interaction leads to 
irreversibility of movements of bodies in time. There is also no equality of actions of 
bodies against each other as bodies act on each other in different moments of time and, 
accordingly, at different distances. 

Use of a principle of least action has allowed to discover a Lagrangian for a pair of 
particles and, further, for system of interacting particles. 

In a limit of small velocities of bodies in comparison with c it is shown that a mutual 
rotation of two particles related to massive, remote, slowly moving bodies (galaxies) 
leads to origin of a centrifugal force. Also the plane motion of pair of particles with 
conservations of the mechanical momentum and the velocity of a inertia centre is 
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realized – i.e. we obtain the equations of Newtonian mechanics. These result is a 
consequence of assumption of an isotropy of space allocation of large remote bodies. 
Therewith three various requirements of an isotropy are required. 

 
 

2. Main principles 
 
Space relativity. A causality principle  
 
The space relativity means, in particular, that one particle in empty space cannot be 
characterized by a motion, and the only pair of particles cannot rotate relatively each 
other because of the impossibility of relative rotation in the absence of absolute space 
and other bodies. 

Further it is supposed that the space does not have any specific systems of reference 
and directions, and also that action of any particle 2 on a particle 1 depends only on the 
relative distance  r21  and the relative velocity  v21  of this particles. 
The causality principle means that if the reference system is associated with particle 1 

and the time , corresponding time t1t 2 when the particle 2 acts (“sends a signal”) on a 

particle 1, is equation 
 
c

tr
tt 121
12  .                                            (2.1) 

Thus the space relativity also means that the velocity of interaction c does not depend on 
movements of particles. 

In the reference system associated with particle 1 it is possible to define the velocity 
of a particle 2 related to particle 1: 

                                                         
1

121
121 dt

tdr
tv  .                                           (2.2) 

Let's consider that action of a particle 2 on a particle 1 is characterized by a definite 
direction so, for example, at action of two particles 2 and 3 on a particle 1 it is possible 

to determine an angle   between directions of action for simultaneously coming 

signals to a particle 1 in the moment  (Fig. 2.1). 

231,

1t

 
 

Fig. 2.1. Scheme of action of particles 2 and 3 on particle 1. Arrows show the direction of action. 
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Fig. 2.2 

 
The causality principle leads to difference between the times of action of a particle 2 on a 
particle 1 and contrary particle  2 on particle 1 (Fig. 2.2), so their actions against each 
other will appear, generally speaking, various that leads to an inequality of action and 
counteraction, and also to irreversibility of motion in time. We will note also that further 
in drawings it is necessary to view only the angles having physical sense. For example, 

on Fig. 2.2 "angle between directions” and  has no physical sense, unlike Fig. 

2.1 where the angle  has physical sense. 

12r 21r

231,
 
Constancy of propagation velocity of a gravitational interaction (velocity of light) 
This principle used in a special theory of relativity, in this case means that in the 

reference system of the particle  coinciding with a particle 1 and moving with velocity 
V in a direction from a particle 2 to particle 1, light propagation has the same velocity c, 

as in the system of a particle 1. Transformation of coordinates from system to system 
1can be written in the form of two-dimensional Lorentz−Poincaré transformation 
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This transformations can be derived using the symmetry of  transitions ↔ 1 and  V → 
−V, restriction of velocities of particles by quantity c, and also group properties of 

transformations at transition in a particle reference system , and further in a reference 

system of particle , moving with velocity rather V

'1

'1

1   related to particle '1 6. It is 
possible to present transition (2.3) in the form of unitary transformation: 
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PdrPdr  .                          (2.4) 

There is a summation on doubled index, and a two-component vector looks as 
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 12121 ; icdtdrdri  .                                                (2.5) 

Transformation (2.4) leaves invariable an interval 

1
2
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2
212121 dtvcdrdrds ii  .                                (2.6) 

Two-component vector of velocity we will note in a view: 
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The two-component vector of differentials of coordinates (2.5) suggests about existence 
of an integral vector 

  212121 ; tticrri  . 

Substituting a relation (2.1) for   in this expression we obtain: 2t

 212121 ; rirr i   .                                                (2.8) 

From vectors (2.7), (2.8) it is possible to form the following invariants concerning 
transformation (2.4): 
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Formulas (2.3), (2.2) lead to following transformation of the relative velocity: 

2
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
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 ,                                             (2.10) 

coinciding by the form with a velocity transformation rule in a special theory of relativity. 
However distance (2.8) transformation essentially differs from transformations of 
"lengths of rulers” in a special theory of relativity: 
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21 .                                 (2.11) 

This expression is symmetrical concerning replacement   .VV,rr '  2121
 
 
Lagrangian and  action function 
 

The Lagrangian  characterizes action of a particle 2 on a particle 1, determining 

action function        
21L

  121212121 , dtrvLS  ,                                    (2.11) 

which should have minimum on real trajectories and is invariant concerning 
transformation (2.4). We will be interested only in a gravitational interaction when there 
are no other fields. Thus action function can depend only on invariants (2.6), (2.9). Then 

the invariance requirement of  leads to a following view of a Lagrangian: 21S
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    ,1,
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urrvL ii                          (2.12) 

where   – some function of a unique nontrivial invariant (2.9), therewith ψ is restricted 

at . Further for entry simplification we will omit a coefficient 21 and we will 

substitute . 

21r
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
t

The minimality condition of action function S leads to the requirement of positivity 
of the second variation of action function: 
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(2.13), (2.14) 
Taking into account a vanishing of variations v  and r on boundaries of an interval of 
integration, we obtain 
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Presence of the term proportional , in expression for  (2.13), (2.15) makes 
impossible minimization of function S. The absence of this term requires the following 
condition: 

v S2
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3






vr

L
                                                (2.16) 

Thus the requirement of a minimality of action function  (2.13), (2.15) leads to 

inequalities 
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From a requirement (2.16) we get common expression for L: 

       ., rDvrBvArvL                                    (2.19) 

Comparing this expression with the formula (2.12) that at the account of equality (2.9) 
looks like: 
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it is easy to see that in accordance to requirement (2.19) function ψ can be subscribed as 

 
x

TxREx
1

 ,                                       (2.21) 
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Here E, R, T – some constant values. In this expression it is necessary to set R = 0 
because of a requirement of limitation of L at r . Then it is possible to present 

expression  in a view  r,vL 

 
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2 11 .                 (2.22) 

Here  and  are constants. As Lagrangian transformation  2m 0r

 t,rf
dt

d
LL   

leaves invariable the first variation of S, at deriving of equations of motion it is possible 
to take advantage instead of the formula (2.22) of following expression 

  .
r

r
cm

c

v
cmr,vL
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22

2
212

2212121 1              (2.23) 

Let's note, however, that the given expression for L can be used only for the specified 
purpose. 

It will be shown later that both the first (kinematical), and second (power) terms in a 
right part of expressions (2.22), (2.23) define action of a particle 2 on a particle 1. 

Inequalities (2.17), (2.18) for a Lagrangian (2.22), (2.23) lead to the requirement of 
positivity of constants 

.                                               (2.24) r,m 00 02 
Let's assume that for a considering case of a gravitational interaction the function of 

action of a particle 2 on a particle 1 depends only on mass of a particle 2, and that  is 

the universal world length. 
0r

The constant of world length could define a space-time curvature. However, as it is 
easy to see, any dependence c(r) leads to impossibility of sufficing of a minimality 
condition of action function (2.16). It means that introduction of curved space-time in the 
given theory is impossible. 
 
 
Principle of minimum action and equations of motion 
 
Equations of motion of system of particles are determined by a minimality condition of 
corresponding action function. The special feature of the given theory is that it is 
impossible to define unified action function for all system of particles. Thus special 
action function should be defined for each distance. 

In this case we consider a motion of a particle 2 related to a particle 1 (i.e. 

distance ) in the presence of other bodies k (Fig. 2.3). Action function which is 

necessary for varying on distance , obviously involves all pair action functions of 

influence on a particle 2 at the moment 

 tr21

21r

212 tt   , and the same functions of influence on 

a particle 1 at the moment : 1tt 
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Fig. 2.3. Scheme of action on particles 1 and 2, defining the variation of distance . 21r
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Here the Lagrangians are similar to (2.23). Corresponding moments of time are 

defined by causal relationships 
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The equations for  we derive, equating zero the first variation of 21r  21rS  (2.25) on 

parameter . Thus it is necessary to adjust all integrals on time (2.25) for uniform time 

t. Then the first variation of  we will write in a view: 
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considering the expression 

,


  r
dt

d
v  

that is similar to expression (2.22). And the point above parameter means a derivative on 
time t: 
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d
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Fig. 2.4. Scheme of influence of “priming” shift of a particle 1 on a modification of distances  

 and 
21r

212121 rrr  111 kkk rrr  . 

 

Thus the vanishing of the first variation of  21rS  leads to the equation of motion 

for : 21r

  .0
2,1

211221  
k

kk GGGG                            (2.29) 

In this equation functions (2.27) are defined by variations of distances  G r   on 

quantity . 21r
 
 
Dependent variations of distances 
 

Let's calculate at first a variation of  on . Let the particle 1 move along a 

direction (Fig. 2.4), having transited distance 

1kr 21r

12 21r  in time tt  . As a 

consequence of motion of particle  2 during the period t t  we get the growth of  

on corresponding distance : 

21r
vr21

      
.

c

tv
rttttvr v 21
2121212121                (2.30) 

Thus, the complete change of  is equal to 21r

 
,21

2121212121 c

tv
rrrrr v                       (2.31) 

Therefore we have: 
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Fig. 2.5. Scheme of influence of “priming” shift 12r  of a particle 2 on a modification of distances  

 and 121212 rrr  222 kkk rrr  .  
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Moving of a particle 1 along a direction  leads to shift of distance equal to 

, so we obtain a complete modification 

12 1kr

2,121 cos kr  1kr  taking into account a 

motion of particle k with the velocity  tvk1 , similar to (2.31),  
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Comparing expressions (2.32) and (2.33), we gain 
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Similarly we get a variation of  on  (not !) (Fig. 2.5): 2kr 12r 21r
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Fig. 2.6. Scheme of influence of “priming” shift Δr12 of a particle 2 in the reference system of this particle, on 
the variations of distances  r12 and  r21. 

 

Let's calculate a variation  on . For this purpose it is necessary to calculate a 

variation   on , further, to present a variation  on  in a view:   
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Let's derive a variation . Let the particle 2 move along a direction  

having a transit distance equal (Fig. 2.6). Then the respective alteration of distance 

 (equal , similar to (2.32), looks like: 
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By deriving variation  let's go over in a reference system of the particle 2. Such 

system moves with velocity  related to a particle 1 (Fig. 2.6). We will designate 

all parameters in such reference system an upper index V. As the particle 2 does not 

move in this system, parameter  is equal to 

21r
V 



21v

Vr21 12r . Thus the distance variation  

is related to the formula , similar to (2.37): 
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Quantity  is related to by transformation rule of distances (2.11) at Vr21 21r 21vV  : 



 11

   






 






 

c

tv

c

tv
rrV 2121
2121 11  . 

Thus, from this relation and expressions (2.37), (2.38) we get: 
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As it is clear from formulas (2.25), (2.26), we must use following expressions for 

quantities  :  t

,1,1 212121

c

r

dt

dt

dt

dt

dt

dt 
                            (2.40) 

as like as corresponding expressions for velocities: 
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Thus dependent variations of distances take a form: 
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21

21

12
21

1

21

21

1

1

1

1

1

1

1

1

1

1

1















 


















 


































          (2.41) 

Substituting expressions (2.40), (2.41) in formulas for  (2.27), we obtain: G

,1
2
21

0
2

2

2
21

21221

2
3































r

rc

c

r
rmG


                       (2.42) 
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,
r

rc

c

r

c

r

c

rr
r

c

r
r

c

r
c

r

c

rr
c

r

mG






































 














 















 





2
12

0
2

2

2
12

2
21

2
2112

21
21

12

21

21

1221

3
21

112

2
3

11

1

1

1

1















    (2.43) 

,1
1

1
cos

2
1

0
2

2

2
1

1
1

21

2,11

2
3







































k

k
k

k
kkk

r

rc

c

r
r

c

r
c

r

mG







      (2.44) 

.
r

rc

c

r

c

r

c

rr
r

c

r
r

c

r
c

r

c

rr
c

r

cosmG

k

kk
k

k
k,kk






































 














 















 





2
2

0
2

2

2
2

2
21

2
212

21
21

2

21

21

212

3
21

122

2
3

11

1

1

1

1















 (2.45) 

Thus, the equations for  (2.29), (2.42) – (2.45) contain derivatives not only from , 

but also from all remaining distances which describe action on a particle 1 (in the 

moment t) and on a particle 2 (in the moment ). In such a way it is possible to derive 

the equations for distances  etc.   

21r

r

21r

21t

2112 ,, kk rr
 
 
3.  Slow motion of pair of particles interacting with distant,  
massive, almost motionless bodies  
 

Let's view a motion of pair of particles 1 and 2 with masses  and , the distance 

between which is much less than distances to massive bodies with numbers k 

 

1m 2m

 21, mmmk 
 .                                                (3.1) 2121 , kk rrr 

The requirement of a slow motion of particles  cr 21  leads to the characteristic time 

212121 ~ rr   of a modification of distance  considerably exceeds time for which 

light propagates this distance 
21r
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.2121 cr                                                   (3.2) 

Let's assume further that the characteristic time of a changing of distance between distant 

bodies considerably exceeds . 21
 
 

The equation for          21r
 

In a limit of small relative velocities of all particles  cr   it is possible to set 

, and from expressions (2.29), (2.41) – (2.45) it is gained a following equation 

for : 

2112 rr 

21r

    
k

kkkkk rrmrmm 1,222,112121 coscos   

         .coscos 1,222,111221  
k

kkkkk rFrFmrFmm    (3.3) 

Here the force function  looks like  rF

  .
2

0
2

r

rc
rF                                                  (3.4) 

The particular interest represents a second term in the left part of equation (3.3). This 
term is related to action of far k-bodies on a pair of particles 1 and 2, and this action 
carries not "force", but the kinematical character which has been caused by correlation 

between distances  and , . As shown later, this action of remote k-bodies 

leads to centrifugal force origin at mutual rotation of pair of particles concerning remote 
bodies. 

21r 1kr 2kr

 
 

The equations for and  and  1kr 2kr
 

The equations for  and  look similar to (2.29), (2.27): 1kr 2kr
      011

2
1

11211  
 kn

nkk
kn

knk GGGGGG ,            (3.5) 

     



kn

nkkk
kn

nk GGGGGG 022
1

2
22122 .         (3.6) 

Schemes of actions are given, accordingly, on Fig. 3.1, 3.2. From these schemes it is 

possible to see that terms 
   1

2
1

1 , kk GG  in the left part of equation (3.5) and terms 

   2
1

2
2 , kk GG  − in equation (3.6) are related to positions of particles 1 and 2 in the 
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Fig. 3.1. Scheme of influence on particles k and 1, determining the modification of distance rk1 . 

 
 

moments, accordingly, 
   1

2
1

1 , kk tt  and 
   2

2
2

1 , kk tt . This times exceed to quantities 

crcr kk 21 2,2  the moment t. As we consider rather remote k-bodies (for example 

galaxies distances to which considerably exceed millions light years), it is clear that 
phases of motion of particles 1 and 2 in such early moments of time in any way are not 
correlated with a phase in the moment t, and besides they will be essentially different for 

different k-bodies. Therefore contributions  and  in the equations (3.5), (3.6) 

will lead to almost accidental influence on motion of particles 1 and 2 in the moment t. 
Further we will neglect such quasiaccidental influence, setting  

kG1 kG2

        .02
2

2
1

1
2

1
1  kkkk GGGG  

 

 
 

Fig. 3.2. Scheme of  influence on particles k and 2, determining the modification of distance  rk2 . 
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Fig. 3.3. Scheme of  influence on particles 1 and 2 in case of slow motion when relationship of angles and 
distances are defined by an Euclidean geometry. 

 
 
Let's assume also that the characteristic times of the relative motion of remote k-bodies 

considerably exceed time  for particles 1 and 2. Accordingly we shall completely 

neglect the interaction between remote bodies, putting 

21
    0,0 21  nknk GG  in the 

equations (3.5), (3.6).  
Let's consider, as well as above for the equation (3.3), a case of small relative 

velocities, when cr  . In this limit a relation between angles and distances is 

defined by an Euclidean geometry. Thus action schemes on Fig. (3.1), (3.2) are 
exchanged by the scheme on Fig. 3.3, and the equations (3.5), (3.6) become: 





kn

knnnkkk rmrmrm ,112,12121 coscos   

      ,coscos ,112,12121 



kn

knnnkkk rFmrFmrFm      (3.7) 

 


1,221,22112 coscos k
kn

nnkkk rmrmrm   

     



kn

knnnkkk rFmrFmrFm .coscos ,121,22112     (3.8) 

Further, it is advisable to use the transition to new variables (Fig. 3.4). We will take 

advantage of following decompositions of parameters at small rations 121 krr : 

,cos,cos,cos, 1122112121 nnnkkkkkk rrrrrrrrrrrr   

,sincoscos,sincoscos 21
2,1

22
1,2 k

k
kkk

k
kk r

r

r

r
  

,coscoscoscos1coscos 1111
,1 n

k
k

n
n

n
k

k
knkn r

r

r

r

r

r

r

r









  
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Fig. 3.4. To the replacement of distances and angles in the equations for r21 , rk1, rk2 The planes formed by 
triads of particles, generally speaking, are not coplanar. 

 
 

.coscoscoscos1coscos 2222
,2 n

k
k

n
n

n
k

k
knkn r

r

r

r

r

r

r

r









      (3.9) 

Substituting quantities (3.9) in the equation (3.3) and neglecting the terms, quadratic in 

, we obtain  the equation for : 21r 21r

          













 

k
kkk

k

k
k r

r

r
rmrmm

..
coscossin 21

2
212121


  

 

       .cos31
1 2

212121 k
k

k
k

k rF
r

mrrFmm         (3.10) 

In the same limit the equation for  becomes: 1kr





 n

kn
knnkkkkk cosrcosmcosrmcosrmrm

..
12121   































 

kn
k

n
n

k
n

n
k

k
knnn cos

r

r
cos

r

r
cos

r

r
cos

r

r
cosrm 11111  
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      







 k

k
kk

k
kkkk r

r
rFm

r

r
rFmrFm 21

212
1 sincoscos2

  
















 


n

n
k

k
kn

kn
nn r

r

r

r
rFm coscos1cos 11    

 
 









kn

nkn
n

n
k

k
n

nn coscos
r

r
cos

r

r
cos

r

r
rFm 111 2 .   (3.11) 

Accordingly we get the equation for : 2kr





 nkn

kn
nkkkkk cosrcosmcosrmcosrmrm

..
22112   




































kn
n

k
k

n
n

n
k

k
knnn r

r

r

r

r

r

r

r
rm coscoscoscos1cos 2222  

      







 k

k
kk

k
kkkk r

r
rFm

r

r
rFmrFm 22

211
2 sincoscos2  

  
















 

 kn
n

n
k

k
knnn r

r

r

r
rFm coscos1cos 22  

 








 


knn
n

k
n

n
kkn

nn r

r

r

r
cos

r

r
rFm coscos2cos 222 .  (3.12) 

Subtracting accordingly left and right parts of the equations (3.11), (3.12), we obtain: 

    kn
n

nnk rmrmm coscoscos
..

212121   

 










 










 





n n

k

k

n

n

n

k

k
knnn rrrr

rmr
coscoscoscos

cos21   

     krFmm cos2121  

  














 



 

n n

n

k

k
knnn rr

rFmr
coscos

cos21  

  






 






 

n

knn

k

n

n

k

n
nn rrr

rFmr
coscos

2
coscos

21  .     (3.13) 
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Adding accordingly left and right parts of the equations (3.11), (3.12), we get a following 

equation  : 1cos kk

   
n

knnn
n

knnn rFmrm cos2cos2   

     

  



 knk
n

n

kk

rrm

rFmmmmr

coscos

coscos

..
21

21121221

 

  










 











 



 

n k

n

n

k

n

n

k

k
knnn rrrr

rmrr
coscoscoscos

cos21   

    














 



 

n n

n

k

k
knnn rr

rFmrr
coscos

cos21  

    






 






 

n

knn

k

n

n

k

n
nn rrr

rFmrr
coscos

2
coscos

21  ,     (3.14) 

where summation on n includes n = k. 

It is easy to see that choosing the ration of lengths of segments  and  as 

following 
1r 2r

,2211 rmrm                                                 (3.15) 

corresponding to a centre of masses in the Newtonian mechanics, the right part of the 
equation (3.14) is converted in zero in accordance to the equation (3.13). Thus the 
equation (3.14) takes a form: 

     
n n

knnnknnn rFmrm .coscos                         (3.16) 

 
 
Equations of motion of pair of particles 1 and 2 at the isotropic  
space allocation of massive distant bodies 
 
Let's consider the unit vector e in the three-dimensional space, directed from a particle 1 

to particle 2, and vector   directed from a centre of mass to a body k. Then the sum in 

the right part of the equation (3.16) we will write in a view: 
ke

    .cos 
n n

nnnkknnn rFmrFm ee  

Let's consider that the isotropy requirement is satisfied 

  .0
n

nnn rFm e                                               (3.17) 

Then the equation (3.16) takes a form: 
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.0
n

nnnk rm ee                                                (3.18) 

Let's view shift of a centre of masses         

    ,0 tt nn Rrr   

where . Meaning a small modifications of vectors  (of order nrR  ne nrr ), we get 

for : nr

    .0 trtr nnn Re  

Substituting this expression in the equation (3.18), we have: 

  .0 n
n

nnm eeR                                           (3.19) 

Let's consider satisfied a following requirement of an isotropy of a masses distribution of 
distant bodies 

 
n

nijjn
n

inn meem .
3
1

,,                              (3.20) 

Thus from a relation (3.19) we get an equation of motion of a centre of masses of 
particles 1 and 2 

.0,0  nrR                                             (3.21) 

Let's view further a difference equation (3.13). We use the formula (3.21) for , 

requirements of an isotropy (3.17), (3.19), and also one more requirement of an isotropy 
nr

    
n n

n
n

nijjninn
n

n rF
r

meerF
r

m .
11

3
1

,,               (3.22) 

Then neglecting by the first term in comparison with second term in the left part of 

equation (3.13) , we obtain from the equation (3.13):  kmmm 21, 
    ,212121 rfmm  er                                    (3.23) 

  .
3

,, 0
2

2
21

21
21

21







n
nm

rc

r
rf

r

r
e                       (3.24) 

Let's note that at performance of requirements of an isotropy equations (3.20), (3.22) for 

 (3.10) coincides with the equation (3.23) scalar multiplied on the right and the left 

parts by a vector e. It is easy to see that relations (3.21), (3.23) coincide with the 
Newtonian equations of motion if to consider  

21r

  (3.24) as gravitation constant of a 

Newtonian mechanics. Thus from the equation (3.23) we have the usual equation for the 
relative distance r (in cylindrical coordinates ,r ): 

     rfmmrr 21
2                                   (3.25) 
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and an orbital momentum conservation law . We will underline that both 

the first term of the left part of equation (3.25), and second (centrifugal force) are caused 
by action of almost immobile, massive, distant bodies on a pair of particles 1 and 2. Thus 
a gravitation constant 

const2 r

  (3.24) is inversely proportional to total of masses of such distant 

bodies. 
Let's underline once again that at a deduction of motion equations of pair of particles 

(3.21), (3.23) the performance of three requirements of an isotropy of space allocation of 
distant bodies (3.17), (3.20), (3.22) was supposed. 

Let's point out also the interesting fact. Apparently from the equation (3.25), both in 
the Newtonian, and in the viewed theory the relative motion is defined by the sum of 

masses of particles 21 mm  . It means, what exactly in the Newtonian equation for the 

relative distance r remains "memory" about that actually the attraction of bodies is the 
sum of mutual actions of particles, each is  proportional to a mass of an acting particle. 
 
 
4. Deductions 

 
1. For the first time the gravitation theory is constructed on a relativity principle as it 

was understood by Berkeley, Mach and Poincaré, i.e. without using concept of absolute 
space (aether), contrary to the theory of universal gravitation of Newton and the known 
theories of gravitation, including a common relativity theory of Hilbert−Einstein. 

2. On the basis of principles of a relativity, causality and limitation of velocities by 
quantity c  the attraction law was obtained between particles at which forces of mutual 
gravitational action are not equal and proportional to masses of an acting particle. This 
law essentially differs from the Newtonian where the attractive force is proportional to 
product of masses of particles. 

3. The causality principle leads to nonreversible in time equations of motion of 
particles. For the viewed problem of motion of pair of particles related to "far stars” the 
reversible equations in time were gained. That, however, is related to the assuming of 
small velocities of particles in comparison with a velocity of light and small 
characteristic times of particles motion in comparison with time of a modification of a 
configuration of "far stars”. 

4. It is discovered new – the kinematical – kind of action of the bodies, caused not 
by gravitational force, but by the relative acceleration of particles (and bodies) in 
conditions where motions depend only on relative distances and velocities. The 
centrifugal force is conditioned by this type of action for mutual rotation of particles 
related to far massive bodies. 

5. Centrifugal force presence was calculated in respect to an isotropy of space 
allocation of far bodies, and implementation of three various conditions of an isotropy is 
required. In this case the equations of the Newtonian type for motion of pair of particles 
are obtained. 

6. At essential removal from centre of an isotropy the centrifugal force can appear 
much less then the one calculated on the Newtonian theory. It can explain a possibility of 
rotation of objects with  an angular velocity, acceding the values that Newton's theory 
supposes, without referring to ideas about “the latent masses”.  
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7. The centrifugal force modification on large distances from “Universe centre” can 
lead to essential modifications of a structure and spectrums of atoms and molecules. 

8. At the account of anisotropy of allocation of distant bodies in a kinematical and 
force terms of equation for the relative distance there occurs a force  proportional to 
anisotropy tensor .  

9. The gravitation constant in "the Newtonian" limit appears to be inversely 
proportional to the sum of masses of distant bodies of the Universe. Finiteness of   

specifies in limitation of the total mass of such bodies. 
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