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On the basis of Berkeley—Mach—Poincaré principle of relativity and in the assumption of absence of
any specific (inertial) reference systems in empty space the new mechanics of bodies motion is
constructed. This motion is determined only by the relative distances and velocities of bodies. It is
shown that the mutual rotation of pair of particles related to almost immobile “distant stars”
(galaxies) leads to centrifugal force origin.
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1. Introduction

The concept of absolute space (acther) has been introduced by Newton at build-up of a
mechanics'. This concept was undergone to criticism from outside Newton's many
contemporaries, in particular Berkeley’ who came to a conclusion about impossibility of
existence of absolute space (aether) with its inertial reference systems, and also to
understanding of that inertia should be caused by motion of bodies related to “distant
stars”. To a similar deduction later have come Mach® and Poincaré* who have specified
in necessity of creation of a relativistic mechanics, i.e. a mechanics of the relative
motion of bodies.

The given problem has not been solved neither in special, nor in common theories of
relativity which still operated with concepts of absolute space. Numerous attempts to
construct the theory in which inertia of rotation would be caused by influence of remote
galaxies (“far stars”), have appeared unsatisfactory’. Thus, the problem of
Berkeley—Mach—Poincar¢ is not solved in existing physical theories.

The theory named as a universal mechanics which initial principles essentially differ
from usually used is stated below. It in particular concerns space-time properties of
bodies motion.

At first, only relative motions of bodies are considered. Thus it is supposed that the
space does not have any preferential (inertial) reference systems. Thereby the space is
not considered as something absolute (aether) possessing to fix bodies motion.

Secondly, the causality principle is used for description of interaction of bodies, i.e.
it is supposed that action of one body on another, located on distance r, happens in time
r/c, where ¢ — velocity of propagation of interactions (velocity of light). Thus velocity of
propagation of interaction is constant and does not depend on character of movements of
bodies that also means a space relativity. Causal character of interaction leads to
irreversibility of movements of bodies in time. There is also no equality of actions of
bodies against each other as bodies act on each other in different moments of time and,
accordingly, at different distances.

Use of a principle of least action has allowed to discover a Lagrangian for a pair of
particles and, further, for system of interacting particles.

In a limit of small velocities of bodies in comparison with ¢ it is shown that a mutual
rotation of two particles related to massive, remote, slowly moving bodies (galaxies)
leads to origin of a centrifugal force. Also the plane motion of pair of particles with
conservations of the mechanical momentum and the velocity of a inertia centre is



realized — i.e. we obtain the equations of Newtonian mechanics. These result is a
consequence of assumption of an isotropy of space allocation of large remote bodies.
Therewith three various requirements of an isotropy are required.

2. Main principles
Space relativity. A causality principle

The space relativity means, in particular, that one particle in empty space cannot be
characterized by a motion, and the only pair of particles cannot rotate relatively each
other because of the impossibility of relative rotation in the absence of absolute space
and other bodies.

Further it is supposed that the space does not have any specific systems of reference
and directions, and also that action of any particle 2 on a particle 1 depends only on the
relative distance I, and the relative velocity V,; of this particles.

The causality principle means that if the reference system is associated with particle 1

and the time ty, corresponding time t, when the particle 2 acts (“sends a signal”) on a
particle 1, is equation

t
bh=1- QIT(l) 2.1

Thus the space relativity also means that the velocity of interaction ¢ does not depend on
movements of particles.

In the reference system associated with particle 1 it is possible to define the velocity
of a particle 2 related to particle 1:

dry(t
Vo (ty) = _—dtfl( 1)- (22)

Let's consider that action of a particle 2 on a particle 1 is characterized by a definite
direction so, for example, at action of two particles 2 and 3 on a particle 1 it is possible

to determine an angle 61,23 between directions of action for simultaneously coming

signals to a particle 1 in the moment t; (Fig. 2.1).

t r,(t) t,

Fig. 2.1. Scheme of action of particles 2 and 3 on particle 1. Arrows show the direction of action.
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The causality principle leads to difference between the times of action of a particle 2 on a
particle 1 and contrary particle 2 on particle 1 (Fig. 2.2), so their actions against each
other will appear, generally speaking, various that leads to an inequality of action and
counteraction, and also to irreversibility of motion in time. We will note also that further
in drawings it is necessary to view only the angles having physical sense. For example,

on Fig. 2.2 "angle between directions” Iy and Iy has no physical sense, unlike Fig.

2.1 where the angle 61 53 has physical sense.

Constancy of propagation velocity of a gravitational interaction (velocity of light)
This principle used in a special theory of relativity, in this case means that in the

reference system of the particle 1 coinciding with a particle 1 and moving with velocity
V in a direction from a particle 2 to particle 1, light propagation has the same velocity c,

as in the system of a particle 1. Transformation of coordinates from system1 to system
Ican be written in the form of two-dimensional Lorentz—Poincaré transformation

2

' ' V V2 /2
dn| = K(dl’21+th1), dt; = K(dtl+2dl’21} K=|1-— , 2.3)
c c

This transformations can be derived using the symmetry of transitions 1 «<» 1 and V —
=V, restriction of velocities of particles by quantity C, and also group properties of

transformations at transition in a particle reference system 1 , and further in a reference

system of particle 1"’ , moving with velocity rather V' related to particle 1 °. It is
possible to present transition (2.3) in the form of unitary transformation:

i | i ij 1ot
(dr21) =pY drzjl, P = v IC . 2.4)
C

There is a summation on doubled index, and a two-component vector looks as



drzll = (drzl; |Cdt1) (2.5)
Transformation (2.4) leaves invariable an interval
dle :\/—dr2'1 drzll I\/CZ —V%l dtl (2.6)

Two-component vector of velocity we will note in a view:
1
i 2\
i dr; v Vo .
uhy = ——2b=1-=2L 2L |, 2.7)
dsy; c? c

The two-component vector of differentials of coordinates (2.5) suggests about existence
of an integral vector

i L
r1 = (s ic(t —t)).
Substituting a relation (2.1) for 1, in this expression we obtain:

i .
1 =(nin). (2.8)
From vectors (2.7), (2.8) it is possible to form the following invariants concerning
transformation (2.4):

i i i V21 V21 2
H1Hh1 =0, Uy Uy ==1, Uy = rzl\/(HCJ/(I—C)_ (2.9)
Formulas (2.3), (2.2) lead to following transformation of the relative velocity:
vo1 -V o, (2.10)
_ V21V

C2

coinciding by the form with a velocity transformation rule in a special theory of relativity.
However distance (2.8) transformation essentially differs from transformations of
"lengths of rulers” in a special theory of relativity:

. V \Y
= 1+— 1-—|. 2.11
1 r21\/( +C]/( Cj (2.11)

This expression is symmetrical concerning replacement Ir; =11, V —>-=V.

Vo1 =
1

Lagrangian and action function

The Lagrangian Ly characterizes action of a particle 2 on a particle 1, determining
action function

Sp1 = [Lag(var, 1)dty, (2.11)
which should have minimum on real trajectories and is invariant concerning
transformation (2.4). We will be interested only in a gravitational interaction when there
are no other fields. Thus action function can depend only on invariants (2.6), (2.9). Then

the invariance requirement of S, leads to a following view of a Lagrangian:
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Ly1(va1, 121) = \V(r21U21) ===, (2.12)
C
where Y — some function of a unique nontrivial invariant (2.9), therewith v is restricted
at I'yy — 00 . Further for entry simplification we will omit a coefficient 21 and we will

substitute T; =t.

The minimality condition of action function S leads to the requirement of positivity
of the second variation of action function:

%L
ar2

2 2
oL oL d
+L (V)2 = +drov——r, Sv=——ar.
2 ov? or ov dt
(2.13), (2.14)
Taking into account a vanishing of variations OV and Or on boundaries of an interval of
integration, we obtain

2 3 3
Idt8r6vﬁ=ljdt(6r)2 AT 2.15)
orov 2 ovor?  orov?

2¢ _ 1 2
58 = [dtq1(sr)

Presence of the term proportional V , in expression for 523 (2.13), (2.15) makes
impossible minimization of function S. The absence of this term requires the following
condition:

3
oL
> = 0. (2.16)
or ov
Thus the requirement of a minimality of action function 823 >0 (2.13), (2.15) leads to
inequalities
2 2 3
L L L
o0, v TE L0 emen
ov or ovor
From a requirement (2.16) we get common expression for L:
L(v,r)= A(v)+B(r)+vD(r). (2.19)

Comparing this expression with the formula (2.12) that at the account of equality (2.9)
looks like:

(2.20)

it is easy to see that in accordance to requirement (2.19) function y can be subscribed as

y(x) = E + Rx +T§, @.21)



Here E, R, T — some constant values. In this expression it is necessary to set R = 0
because of a requirement of limitation of L at ' —>00. Then it is possible to present

expression L(V, I’) in a view

2

Vv VK

L(v,r) = —m2c2 - 11|00t (2.22)
o2 c)r

Here My and Iy are constants. As Lagrangian transformation

L - L+if(r,t)
dt

leaves invariable the first variation of S, at deriving of equations of motion it is possible
to take advantage instead of the formula (2.22) of following expression

;
Ly (V21.r21) = ,c2 -0 (2.23)

Let's note, however, that the given expression for L can be used only for the specified
purpose.

It will be shown later that both the first (kinematical), and second (power) terms in a
right part of expressions (2.22), (2.23) define action of a particle 2 on a particle 1.

Inequalities (2.17), (2.18) for a Lagrangian (2.22), (2.23) lead to the requirement of
positivity of constants

mo >0, o > 0. (2.24)

Let's assume that for a considering case of a gravitational interaction the function of
action of a particle 2 on a particle 1 depends only on mass of a particle 2, and that Iy is

the universal world length.

The constant of world length could define a space-time curvature. However, as it is
easy to see, any dependence C(r) leads to impossibility of sufficing of a minimality
condition of action function (2.16). It means that introduction of curved space-time in the
given theory is impossible.

Principle of minimum action and equations of motion

Equations of motion of system of particles are determined by a minimality condition of
corresponding action function. The special feature of the given theory is that it is
impossible to define unified action function for all system of particles. Thus special
action function should be defined for each distance.

In this case we consider a motion of a particle 2 related to a particle 1 (i.e.

distance Iy} ('[)) in the presence of other bodies k (Fig. 2.3). Action function which is

necessary for varying on distance I')1, obviously involves all pair action functions of
influence on a particle 2 at the moment ty =151 , and the same functions of influence on

a particle 1 at the moment t=1;:
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Fig. 2.3. Scheme of action on particles 1 and 2, defining the variation of distance I’21 .

S[n1]=S21+S12+ 2.(Ski+Sk2), Sap =[Lapdtg. (2
k=12

Here the Lagrangians are similar to LGB (2.23). Corresponding moments of time are

defined by causal relationships

r(t
thy =t—21:(), tp =t -

The equations for I'y; we derive, equating zero the first variation of S[I’21] (2.25) on

o (t
kz:tﬂ_kz((:zl)' (2.26)

n2(t1) t _t_fkl(t) ¢
1 kl - ’
c c
parameter I'y | . Thus it is necessary to adjust all integrals on time (2.25) for uniform time

t. Then the first variation of SOLB we will write in a view:

A
Stap |d |, [ Ta .2 227
SSQB = —J.6r21 -GGB dt, GOLB =My 8[’7(;? a raﬁ [té —((:2[3] + tB -0 , ( )

considering the expression
d
Vop = _@ Top »

that is similar to expression (2.22). And the point above parameter means a derivative on
time t:

o d . d
foup = ¢ B> tg = atg. (2.28)



t2[ t;l
174, 1 r. () 22

Fig.2.4. Scheme of influence of “priming” shift Ar,; of a particle 1 on a modification of distances

M1 =M1 =8N and g — g = 8ri -

Thus the vanishing of the first variation of S[rZI] leads to the equation of motion
forly:

G21 + GIZ + Z(le + Gk2)= 0. (2.29)
k#1,2

In this equation functions GGB (2.27) are defined by variations of distances SronB on

quantity Ol .

Dependent variations of distances

Let's calculate at first a variation of Iy on Iy . Let the particle 1 move along a
direction 2—1 (Fig. 2.4), having transited distance Alpq in time t'—t . As a

consequence of motion of particle 2 during the period t'—t we get the growth of M

on corresponding distance AI’ZV 1

v Vo1 t
sy = v =)t = oy 20 s
Thus, the complete change of I’y is equal to
v vy (t)
6r21 = Aer +Ar21 = Aer - 8r21 o , 231

Therefore we have:
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Fig.2.5. Scheme of influence of “priming” shift Arj, of a particle 2 on a modification of distances

I =My =8N and rg) —1p =3y -

Sy = . (2.32)
21 ﬁjl Vo (t

Moving of a particle 1 along a direction 2—>1 leads to shift of distance Iy equal to
Ary| cos elﬁkz, so we obtain a complete modification Orj taking into account a

motion of particle k with the velocity Vi (t) , similar to (2.31),

Vi (t
8rk1 ~ Aer COSOI k2 —8rk1 kl( ),
’ C

whence we have:
Ar,; cos 61’k2

8fk1 =~ . (2.33)
1 Vkliti

+
C
Comparing expressions (2.32) and (2.33), we gain
Vo (t)
dr
Kl _ C cosO k. (2.34)
oy 1+ Via (t)
c
Similarly we get a variation of I,5 on o (notlp;!) (Fig. 2.5):
14 V12 (t21)
dr
k2 _ ¢ cos 0y - (2.35)
oy, Vk2 (t21)

c
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Fig. 2.6. Scheme of influence of “priming” shift Ar, of a particle 2 in the reference system of this particle, on
the variations of distances r, and ry;.

Let's calculate a variation I on Ipy. For this purpose it is necessary to calculate a
variation 5 on Iy, further, to present a variation I on Iy in a view:
Srk 2 6r1 ) %)

= . (2.36)
8I’21 8[’21 6r12

Let's derive a variation Ol /8. Let the particle 2 move along a direction 1 —2
having a transit distance equal Al (Fig. 2.6). Then the respective alteration of distance
o (equal 6[’12 , similar to (2.32), looks like:

r ' or
8ry = Ay —Vip(tar)- Aty Aty = (th—t])-(t2 1) = %

whence we gain
A D)

1 V12 (t21)
C
By deriving variation Ol let's go over in a reference system of the particle 2. Such

system moves with velocity V =V»; related to a particle 1 (Fig. 2.6). We will designate
all parameters in such reference system an upper index V. As the particle 2 does not

move in this system, parameter Ar;/ 1 is equal to Al . Thus the distance variation 8[’;/ 1

is related to the formula Aré’l , similar to (2.37):

ArY, Ar
orY = 2L ~12 (2.38)
21 1+V21(t) 1+V21(t)
c c

Quantity SI’;/ | is related to 8 by transformation rule of distances (2.11) at V =V :
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Eir;/1 = 8r21\/£1+\/2(1:(t)]/(1_\/2(1:(t)j .

Thus, from this relation and expressions (2.37), (2.38) we get:

6I’12 _ I+
oM 1+V12(t21)
(2.39)
8I’k2 _ I+
N 1+

As it is clear from formulas (2.25), (2.26), we must use following expressions for
quantities fﬁ:

dt dt dt r
Loy, =220 21 (2.40)
dt dt dt C
as like as corresponding expressions for velocities:
, , dro o drko %)
Va1 =1 Vk =~k Vizg = - = o Vk S =
dty;  _"21 dtyy  _f1
c c
Thus dependent variations of distances take a form:
, . \2
_hi (1—'@1)
on o
e I T e — :
o1 tki o1 _f1th2
c C (241)

, 2
()
8rk2 _ C

opr _ Ptk

. I
GZI =Mmy rz{ - + , (2.42)
C
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. \3
%)
C

Gpp=m—->-
1-1th2 (2.43)
C
_3
¢ i SRR Y
, 21 ), N2M1 21 12 0
x| Fy|1--2L |+ 221 ||| 1--2L | - 12 20
{12( Cj 2l c? }( CJ c? rlz2
1=t 2\ 2
Gy = 0 c Jp |-tk ¢h 2.44
k1 = Mk cosUy ko ; k1 5 t— o @49
l_ﬂ C Mg
c
. \3
i
c
Gko = m cos Gz,kl iy 411 X
1= c (2.45)

2TH

. . . \2
fko F i I

x [i"k2(1—rilj+f21k2221} (1—%1) k2| 20
C c f

k2

Thus, the equations for I (2.29), (2.42) — (2.45) contain derivatives not only fromly,
but also from all remaining distances which describe action on a particle 1 (in the
moment t) and on a particle 2 (in the moment t51). In such a way it is possible to derive

the equations for distances o, k1, lko ete.

3. Slow motion of pair of particles interacting with distant,
massive, almost motionless bodies

Let's view a motion of pair of particles 1 and 2 with masses M; and M, , the distance
between which is much less than distances to massive bodies with numbers k
(mk >>My, My )

M1 <<TIk1> ko 3.1)
The requirement of a slow motion of particles I << C leads to the characteristic time

To1~ / fr1 of a modification of distance Iy considerably exceeds time for which
light propagates this distance
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21 >>r21/C. 3.2)
Let's assume further that the characteristic time of a changing of distance between distant

bodies considerably exceeds T7q.

The equation for Iy

In a limit of small relative velocities of all particles (r(XB << C) it is possible to set

My =1, and from expressions (2.29), (2.41) — (2.45) it is gained a following equation
for I1:

(my+my)iyy + ka (rkl cosBy ko + fio 00592,k1)=

= (my +m;)F(r2) ka[ F(rii) C0591k2+F(rk2)00592k1] (33)

Here the force function F( ) looks like

2
F(r)=- Crzfo : (3.4)

The particular interest represents a second term in the left part of equation (3.3). This
term is related to action of far k-bodies on a pair of particles 1 and 2, and this action
carries not "force", but the kinematical character which has been caused by correlation

between distances Iy7 and Iy, ko . As shown later, this action of remote k-bodies

leads to centrifugal force origin at mutual rotation of pair of particles concerning remote
bodies.

The equations for and Iy and >

The equations for I¢; and Ig> look similar to (2.29), (2 27):

G + G + 3Gy +6l W+ Tcll o0, 3
n=k n=k

Go +Gpp + 36 +6 460+ Y6l 0. e
n=k n=k

Schemes of actions are given, accordingly, on Fig. 3.1, 3.2. From these schemes it is

possible to see that terms Gl(ll<) ,ng) in the left part of equation (3.5) and terms

Ggi) , GI(I% ) — in equation (3.6) are related to positions of particles 1 and 2 in the
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Fig. 3.1. Scheme of influence on particles k and 1, determining the modification of distance ry; .

moments, accordingly, tl(ll(),tglk) and tl(i)’tg‘() This times exceed to quantities

2 1 / c,2 o / C the moment t. As we consider rather remote K-bodies (for example

galaxies distances to which considerably exceed millions light years), it is clear that
phases of motion of particles 1 and 2 in such early moments of time in any way are not
correlated with a phase in the moment t, and besides they will be essentially different for

different k-bodies. Therefore contributions Gy and Gy in the equations (3.5), (3.6)

will lead to almost accidental influence on motion of particles 1 and 2 in the moment t.
Further we will neglect such quasiaccidental influence, setting

o) “ol) o op -0,

rlz(tzl)

Fig. 3.2. Scheme of influence on particles K and 2, determining the modification of distance ri,.
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Fig. 3.3. Scheme of influence on particles 1 and 2 in case of slow motion when relationship of angles and
distances are defined by an Euclidean geometry.

Let's assume also that the characteristic times of the relative motion of remote k-bodies
considerably exceed time Ty for particles 1 and 2. Accordingly we shall completely

neglect the interaction between remote bodies, putting Gr(11k):0’ Gr(lzk)=0 in the
equations (3.5), (3.6).

Let's consider, as well as above for the equation (3.3), a case of small relative
velocities, when rOlB <<C . In this limit a relation between angles and distances is
defined by an Euclidean geometry. Thus action schemes on Fig. (3.1), (3.2) are
exchanged by the scheme on Fig. 3.3, and the equations (3.5), (3.6) become:

my rkl +Mmy f21 COSQsz + Zmn 'r'm CcoS Ol’kn =

n=k
= My F(rkl) + My F(er)COSOI,zk + Zmn F(rm )COSGl’kn , (37
n=k
My i"kz + my i"21 COSGz’kl + Zmn rnz COSszkl =
n=k
=My F(rkz) + My F(er)COSGZ’kl + Zmn F(rnz)cosel’kn . (3.8)
n=k

Further, it is advisable to use the transition to new variables (Fig. 3.4). We will take
advantage of following decompositions of parameters at small rations 'y / rg <<1:

h1 =N+, k=TI +hHcosey, Iy ==l COSQy, Iy = I+ COSPy,

h . n .
cos 0y k1 ®—cos Qg +-2sin? @k, €0s0| Ky =Ccos Py +—Lsin? Pk »
2 r 2 r

n n N n
cos0y kn = cOSQyp | lI——cos @ ——cos@y | + —cosQy + —cosQp,
’ Ik M M Tk
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k

Fig. 3.4. To the replacement of distances and angles in the equations for r,; , I, e The planes formed by
triads of particles, generally speaking, are not coplanar.

I I I I
€080y kn & COS Pyn (1+2COS(pk +2coscpnj—2coscpk —Zcosqn. (39
’ Ik f f rk

n n
Substituting quantities (3.9) in the equation (3.3) and neglecting the terms, quadratic in

1, we obtain the equation for Iy :

(m1+m2)r21+2mk r21ésm2 Pk + COSQK Ih1COSPy | =
k

1
= (my+my )F(ry;) + rp; > my r_F(rk )(1 — 3cos? (pk). (3.10)
k k

In the same limit the equation for I; becomes:

M fi + Mg 1 COS @K + My FH] COS@K + > Mp COS Pk I COS Py +
n=k

" n n n n
+ ) My <] cosegn | 1——-C0S @k ——-COS @y |+—COS P +—COSQk | ¢ =
n=k Tk n Tk n



17

=My F(rk )—2 M F(rk ):—1003(pk +m, F(r21){c03(pk +:—lsin2 (pk} +
k k

+ Zmn F(rn){COS(pkn [l—r—lcosq)k —icosq)n]} +
rk I

n=k n

§ I
+ 3 mp F(r K= cos o + 1 cosgp —2 L cos gyn cosgp b Gi11)
n=k " Ik 'n

Accordingly we get the equation for Iy :

mk Tk —Mg I COS @k —My iH1 COS Pk — Zmn COS @kn 2 COS P +
n=k

" I I I I
+ ). mpiy, {coscpkn [1+2c0sq)k +2coscan—zcoscpk —2coscpn} =
n-k Tk 'n n Tk

=my F(rk )+2mk F(rk )::—zcoscpk +my F(rzl){—cosq)k +::—2sin2 (pk} +
k k

+ > my F(rn){coscpkn (1+:200scpk +r7‘cos<pnj}+
k I

n=k n
I r I

+ ZmnF(rn ){—lCOS(pn —lcoscpk +2;coscpn COS(Pkn}' (3.12)
n=k k " )

Subtracting accordingly left and right parts of the equations (3.11), (3.12), we obtain:

(ml +m2)‘r‘21 cosQy + Zmn Iy COSQPp COSPKn +
n

.. COS COS COS COS
+ 1 ) My iy —Cosq)kn[ Pk, £O5Pn j+ P, COSPk | _
n Ik iy Ik 'n

= (my +my )F(ry; Jcos o +

© ra Zim ) ~cosg <502 ||

n 0

+r1 Y. mp F(rn){coi@k 4 505¢Pn _ 5 COSPn COS(P"”} . (3.13)
n n Ik M
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Adding accordingly left and right parts of the equations (3.11), (3.12), we get a following
equation (COS Pk = 1):

2Z:mn I COS Qkn —2Zmn F(ry )eos i =
n n

= —fy1 (my —my)cos gy +(my —my )F(ry )cos g —

->'my irl -1 icosq)k CoS Qkn —

n
. COSPy  COSP COSQK  COSP
_(rl_r2)zmn rn{_COS(Pkn( “r anr Kt n:l_
" Ik 'n I Ik
COSPK  COSQ
(1)l ) cosgrn 2208 1200
n Tk M

(-1 )Z my F (1, ){_ COSQPk _ COSQn _ , COSPp COS Pkn } . (.14
n 0 Tk M
where summation on n includes n = k.
It is easy to see that choosing the ration of lengths of segments I} and Iy as
following
mnR=mr, (3.15)
corresponding to a centre of masses in the Newtonian mechanics, the right part of the

equation (3.14) is converted in zero in accordance to the equation (3.13). Thus the
equation (3.14) takes a form:

Zmn i COS@kn = Zmn F(rn )coscpkn . (3.16)
n n

Equations of motion of pair of particles 1 and 2 at the isotropic
space allocation of massive distant bodies

Let's consider the unit vector e in the three-dimensional space, directed from a particle 1
to particle 2, and vector €) directed from a centre of mass to a body k. Then the sum in
the right part of the equation (3.16) we will write in a view:
Zmn F(rn )COS(Pkn =€y ‘zmn F(rn )en .
n n
Let's consider that the isotropy requirement is satisfied

> my F(ryJen =0. (3.17)
n

Then the equation (3.16) takes a form:
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ex- Y. Mpine, =0. (3.18)
n
Let's view shift of a centre of masses
f(t)=m +R(t).
where R << I},. Meaning a small modifications of vectors €, (of order I‘/ M), we get

for Iy:

() ~rd+e, R(t).

Substituting this expression in the equation (3.18), we have:
> my (RepJen =0. (3.19)
n

Let's consider satisfied a following requirement of an isotropy of a masses distribution of
distant bodies

=8 1
n n
Thus from a relation (3.19) we get an equation of motion of a centre of masses of
particles 1 and 2
R=0, i,=0. (3.21)
Let's view further a difference equation (3.13). We use the formula (3.21) for f},

requirements of an isotropy (3.17), (3.19), and also one more requirement of an isotropy

1 . 1
n " n n

Then neglecting by the first term in comparison with second term in the left part of

equation (3.13) (ml , My << My ), we obtain from the equation (3.13):

'r'21 =e(m1+ mz)f(rzl), (3.23)
2
M Y 3c Iy
e=—=, f(ph)=—%, v= ) (3.24)
21 ) 51 2.M
n

Let's note that at performance of requirements of an isotropy equations (3.20), (3.22) for
1 (3.10) coincides with the equation (3.23) scalar multiplied on the right and the left

parts by a vector e. It is easy to see that relations (3.21), (3.23) coincide with the
Newtonian equations of motion if to consider 7Y (3.24) as gravitation constant of a

Newtonian mechanics. Thus from the equation (3.23) we have the usual equation for the
relative distance r (in cylindrical coordinates I', ¢ ):

F—r(p)* =(m;+m,)f(r) (3.25)
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and an orbital momentum conservation law I’2 ¢ = const . We will underline that both

the first term of the left part of equation (3.25), and second (centrifugal force) are caused
by action of almost immobile, massive, distant bodies on a pair of particles 1 and 2. Thus
a gravitation constant Y (3.24) is inversely proportional to total of masses of such distant

bodies.

Let's underline once again that at a deduction of motion equations of pair of particles
(3.21), (3.23) the performance of three requirements of an isotropy of space allocation of
distant bodies (3.17), (3.20), (3.22) was supposed.

Let's point out also the interesting fact. Apparently from the equation (3.25), both in
the Newtonian, and in the viewed theory the relative motion is defined by the sum of

masses of particles My +M, . It means, what exactly in the Newtonian equation for the

relative distance r remains "memory" about that actually the attraction of bodies is the
sum of mutual actions of particles, each is proportional to a mass of an acting particle.

4. Deductions

1. For the first time the gravitation theory is constructed on a relativity principle as it
was understood by Berkeley, Mach and Poincarg, i.e. without using concept of absolute
space (aether), contrary to the theory of universal gravitation of Newton and the known
theories of gravitation, including a common relativity theory of Hilbert—Einstein.

2. On the basis of principles of a relativity, causality and limitation of velocities by
quantity ¢ the attraction law was obtained between particles at which forces of mutual
gravitational action are not equal and proportional to masses of an acting particle. This
law essentially differs from the Newtonian where the attractive force is proportional to
product of masses of particles.

3. The causality principle leads to nonreversible in time equations of motion of
particles. For the viewed problem of motion of pair of particles related to "far stars” the
reversible equations in time were gained. That, however, is related to the assuming of
small velocities of particles in comparison with a velocity of light and small
characteristic times of particles motion in comparison with time of a modification of a
configuration of "far stars”.

4. It is discovered new — the kinematical — kind of action of the bodies, caused not
by gravitational force, but by the relative acceleration of particles (and bodies) in
conditions where motions depend only on relative distances and velocities. The
centrifugal force is conditioned by this type of action for mutual rotation of particles
related to far massive bodies.

5. Centrifugal force presence was calculated in respect to an isotropy of space
allocation of far bodies, and implementation of three various conditions of an isotropy is
required. In this case the equations of the Newtonian type for motion of pair of particles
are obtained.

6. At essential removal from centre of an isotropy the centrifugal force can appear
much less then the one calculated on the Newtonian theory. It can explain a possibility of
rotation of objects with an angular velocity, acceding the values that Newton's theory
supposes, without referring to ideas about “the latent masses”.
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7. The centrifugal force modification on large distances from “Universe centre” can
lead to essential modifications of a structure and spectrums of atoms and molecules.

8. At the account of anisotropy of allocation of distant bodies in a kinematical and
force terms of equation for the relative distance there occurs a force proportional to
anisotropy tensor .

9. The gravitation constant in "the Newtonian" limit appears to be inversely
proportional to the sum of masses of distant bodies of the Universe. Finiteness of ¥

specifies in limitation of the total mass of such bodies.
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